A Complete Equational Theory for Quantum Circuits

Alexandre Clément*, Nicolas Heurtel†‡, Shane Mansfield†, Simon Perdrix*, Benoît Valiron‡¶

*Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
†Quandela, 7 rue Léonard de Vinci, 91300 Massy, France
‡Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay, LMF, 91190, Gif-sur-Yvette, France
¶CentraleSupélec, 91190, Gif-sur-Yvette, France

LICS 2023
June 29, 2023
Quantum Circuits

- Roughly speaking, they are the assembly language of a quantum processor.
- Therefore ubiquitous in quantum computing.
- Roughly speaking, they are the assembly language of a quantum processor.
- Therefore ubiquitous in quantum computing.
Quantum Circuits

- Roughly speaking, they are the assembly language of a quantum processor.
- Therefore ubiquitous in quantum computing.
Quantum Circuits

- Roughly speaking, they are the assembly language of a quantum processor.

- Therefore ubiquitous in quantum computing.
Quantum Circuits

- Roughly speaking, they are the assembly language of a quantum processor.
- Therefore ubiquitous in quantum computing.

A Complete Equational Theory for Quantum Circuits
We consider the PROP of quantum circuits generated by:

\[
\begin{align*}
P(\varphi) & \quad \text{phase gate} \\
H & \quad \text{Hadamard} \\
\end{align*}
\]

\[
\begin{align*}
\sim \text{Z-rotation} \\
\text{controlled not} \\
\end{align*}
\]

Structure of PROP:
- **Additional generators:**
 - empty circuit
 - identity
 - swap

- **The circuits are built by means of:**
 - sequential composition \(C_2 \circ C_1 \)
 - parallel composition \(C_1 \otimes C_2 \)

Deformation rules, e.g.

\[
\begin{align*}
\text{C} \quad \text{C} &= \quad \text{C} \quad \text{C} \\
\end{align*}
\]
Quantum Circuits

We consider the PROP of quantum circuits generated by:

- \(P(\varphi)\) phase gate (\(\simeq Z\)-rotation)
- \(H\) Hadamard
- controlled not

Structure of PROP:

- Additional generators:
 - empty circuit
 - identity
 - swap

- The circuits are built by means of:
 - sequential composition
 - parallel composition

- Deformation rules, e.g. \(C_2 \circ C_1 = C_1 \otimes C_2\)
Quantum Circuits

We consider the PROP of quantum circuits generated by:

- $P(\varphi)$: phase gate ($\approx Z$-rotation)
- H: Hadamard
- controlled not

Structure of PROP:
- Additional generators:
 - empty circuit
 - identity
 - swap

- The circuits are built by means of:
 - sequential composition $C_2 \circ C_1$
 - parallel composition $C_1 \otimes C_2$

Deformation rules, e.g.

$C \odot C = C \otimes C$
We consider the PROP of quantum circuits generated by:

- $P(\varphi)$: phase gate ($\approx Z$-rotation)
- H: Hadamard
- controlled not

Structure of PROP:
- Additional generators:
 - empty circuit
 - identity
 - swap

- The circuits are built by means of:
 - sequential composition $C_2 \circ C_1$
 - parallel composition $C_1 \otimes C_2$

Deformation rules, e.g. $C \otimes C = C_2 \circ C_1$
We consider the PROP of quantum circuits generated by:

\[P(\varphi) \]

- phase gate
 \(\approx \text{Z-rotation} \)

\[H \]

- Hadamard

\[\text{controlled not} \]

Structure of PROP:

- Additional generators:
 - empty circuit
 - identity
 - swap

- The circuits are built by means of:
 - sequential composition
 \(C_2 \circ C_1 \)
 - parallel composition
 \(C_1 \otimes C_2 \)

- Deformation rules, e.g.
 \[C \circ (C_2 \circ C_1) = (C \circ C_2) \circ C_1 \]
Quantum Circuits

We consider the PROP of quantum circuits generated by:

- $P(\varphi)$: phase gate ($\simeq Z$-rotation)
- H: Hadamard
- controlled not

We define:

- $Z := P(\pi)$
- $X := HZH$
- $R_X(\theta) := H P(\theta) H$
- $R_X(\frac{\theta}{2})$
- $R_X(-\frac{\theta}{2})$
- $P(\varphi)$

We consider the PROP of quantum circuits generated by:

- \(P(\phi) \) phase gate (\(\approx \) Z-rotation)
- \(H \) Hadamard
- controlled not

We define:

\[
Z := P(\pi) \\
X := HZH \\
R_X(\theta) := H P(\theta) H \\
R_X(-\theta/2) := H \\
P(\varphi) := H R_X(\varphi) H
\]

Quantum Circuits

We consider the PROP of quantum circuits generated by:

- $P(\varphi)$ (phase gate, $\approx Z$-rotation)
- H (Hadamard)
- $\overline{\text{not controlled}}$

We define:

- $Z := P(\pi)$
- $X := HZH$
- $R_X(\theta) := H P(\theta) H$
- $R_X(\theta) := H P(\theta) H$

An equational theory is a set of equalities between circuits, e.g.:

\[
\begin{align*}
\begin{array}{cccc}
H & H & = & \quad \quad \quad \quad \quad \\
& & \quad & \\
& & \quad & \\
H & H & = & \quad \quad \quad \quad \quad \\
& & P(\frac{\pi}{2}) & \\
& & P(-\frac{\pi}{2}) & \\
& & & \\
\end{array}
\end{align*}
\]

- Common tool for doing circuit transformations
- Used in particular for circuit optimisation

It is complete if any two circuits representing the same unitary can be transformed into each other.

- Provides theoretical foundations e.g. for defining rewriting strategies
- Open problem for 30 years
An equational theory is a set of equalities between circuits, e.g.:

- $H \cdot H = H$
- $H \oplus H = P\left(\frac{\pi}{2}\right) \cdot P\left(-\frac{\pi}{2}\right)$
- $P\left(\frac{\pi}{2}\right) \cdot P\left(-\frac{\pi}{2}\right) = 1$

- Common tool for doing circuit transformations
- Used in particular for circuit optimisation

It is complete if any two circuits representing the same unitary can be transformed into each other.

- Provides theoretical foundations e.g. for defining rewriting strategies
- Open problem for 30 years
An equational theory is a set of equalities between circuits, e.g.:

- $H \, H = H$
- $H \oplus H = P(\frac{\pi}{2}) \oplus P(-\frac{\pi}{2})$
- $P(\frac{\pi}{2}) \, P(\frac{\pi}{2}) = P(\pi) \, P(-\pi)$

- Common tool for doing circuit transformations
- Used in particular for circuit optimisation

It is complete if any two circuits representing the same unitary can be transformed into each other.

- Provides theoretical foundations e.g. for defining rewriting strategies
- Open problem for 30 years
An equational theory is a set of equalities between circuits, e.g.:

\[\begin{align*}
 H \otimes H &= \quad \\
 H \otimes H &= P(\frac{\pi}{2}) \otimes P(-\frac{\pi}{2})
\end{align*} \]

- Common tool for doing circuit transformations
- Used in particular for circuit optimisation

It is complete if any two circuits representing the same unitary can be transformed into each other.

- Provides theoretical foundations e.g. for defining rewriting strategies
- Open problem for 30 years
An equational theory is a set of equalities between circuits, e.g.:

\[
\begin{align*}
H \otimes H &= H \\
H \otimes H &= P(\frac{\pi}{2}) \otimes P(-\frac{\pi}{2})
\end{align*}
\]

- Common tool for doing circuit transformations
- Used in particular for circuit optimisation

It is complete if any two circuits representing the same unitary can be transformed into each other.

- Provides theoretical foundations e.g. for defining rewriting strategies
- Open problem for 30 years
An equational theory is a set of equalities between circuits, e.g.:

\[H H = H H = P(\pi/2) P(-\pi/2) P(\pi/2) = \]

- Common tool for doing circuit transformations
- Used in particular for circuit optimisation

It is complete if any two circuits representing the same unitary can be transformed into each other.

- Provides theoretical foundations e.g. for defining rewriting strategies
- Open problem for 30 years
Partial Results

- Complete equational theories for non-universal fragments, e.g.:
 - circuits on at most 2 qubits [X. Bian, P. Selinger, ’18]
 - CNot-dihedral circuits [M. Amy, J. Chen, N. J. Ross, ’18]

- ZX-calculus: generalisation of quantum circuits
 - more expressive than quantum circuits (can represent all matrices in $\mathbb{C}^{m \times n}$)
 - equipped with a complete equational theory [E. Jeandel, S. Perdrix, R. Vilmart, ’18]
 - extracting a quantum circuit from a unitary ZX-diagram is $\#P$-hard in general
 - completeness of ZX-calculus does not lead to completeness inside quantum circuits.
Partial Results

- **Complete equational theories for non-universal fragments, e.g.:**
 - circuits on at most 2 qubits [X. Bian, P. Selinger, '18]
 - CNot-dihedral circuits [M. Amy, J. Chen, N. J. Ross, ’18]

- **ZX-calculus:** generalisation of quantum circuits
 - more expressive than quantum circuits (can represent all matrices in $\mathbb{C}^{m \times n}$)
 - equipped with a complete equational theory [E. Jeandel, S. Perdrix, R. Vilmart, ’18]
 - extracting a quantum circuit from a unitary ZX-diagram is $\#P$-hard in general
 - completeness of ZX-calculus does not lead to completeness inside quantum circuits.
Partial Results

- Complete equational theories for non-universal fragments, e.g.:
 - circuits on at most 2 qubits [X. Bian, P. Selinger, '18]
 - CNot-dihedral circuits [M. Amy, J. Chen, N. J. Ross, '18]

- ZX-calculus: generalisation of quantum circuits
 - more expressive than quantum circuits (can represent all matrices in $\mathbb{C}^{m \times n}$)
 - equipped with a complete equational theory [E. Jeandel, S. Perdrix, R. Vilmart, '18]
 - extracting a quantum circuit from a unitary ZX-diagram is \#P-hard in general
 - completeness of ZX-calculus does not lead to completeness inside quantum circuits.
Partial Results

- Complete equational theories for non-universal fragments, e.g.:
 - circuits on at most 2 qubits [X. Bian, P. Selinger, ’18]
 - CNot-dihedral circuits [M. Amy, J. Chen, N. J. Ross, ’18]

- ZX-calculus: generalisation of quantum circuits
 - more expressive than quantum circuits (can represent all matrices in $\mathbb{C}^{m \times n}$)
 - equipped with a complete equational theory [E. Jeandel, S. Perdrix, R. Vilmart, ’18]
 - extracting a quantum circuit from a unitary ZX-diagram is $\#P$-hard in general
 - completeness of ZX-calculus does not lead to completeness inside quantum circuits.
Partial Results

- Complete equational theories for non-universal fragments, e.g.:
 - circuits on at most 2 qubits [X. Bian, P. Selinger, '18]
 - CNot-dihedral circuits [M. Amy, J. Chen, N. J. Ross, ’18]

- ZX-calculus: generalisation of quantum circuits
 - more expressive than quantum circuits (can represent all matrices in $\mathbb{C}^{m \times n}$)
 - equipped with a complete equational theory [E. Jeandel, S. Perdrix, R. Vilmart, ’18]
 - extracting a quantum circuit from a unitary ZX-diagram is $\#P$-hard in general
 - completeness of ZX-calculus does not lead to completeness inside quantum circuits.

ZX-Diagrams

Unitary ZX-Diagrams

Quantum Circuits
Partial Results

- Complete equational theories for non-universal fragments, e.g.:
 - circuits on at most 2 qubits [X. Bian, P. Selinger, '18]
 - CNot-dihedral circuits [M. Amy, J. Chen, N. J. Ross, ’18]

- ZX-calculus: generalisation of quantum circuits
 - more expressive than quantum circuits (can represent all matrices in $\mathbb{C}^{m \times n}$)
 - equipped with a complete equational theory [E. Jeandel, S. Perdrix, R. Vilmart, ’18]
 - extracting a quantum circuit from a unitary ZX-diagram is $\#P$-hard in general
 - completeness of ZX-calculus does not lead to completeness inside quantum circuits.
Partial Results

- Complete equational theories for non-universal fragments, e.g.:
 - circuits on at most 2 qubits [X. Bian, P. Selinger, ’18]
 - CNot-dihedral circuits [M. Amy, J. Chen, N. J. Ross, ’18]

- ZX-calculus: generalisation of quantum circuits
 - more expressive than quantum circuits (can represent all matrices in $\mathbb{C}^{m\times n}$)
 - equipped with a complete equational theory [E. Jeandel, S. Perdrix, R. Vilmart, ’18]
 - extracting a quantum circuit from a unitary ZX-diagram is #P-hard in general
 - completeness of ZX-calculus does not lead to completeness inside quantum circuits.
Partial Results

- Complete equational theories for non-universal fragments, e.g.:
 - circuits on at most 2 qubits [X. Bian, P. Selinger, '18]
 - CNot-dihedral circuits [M. Amy, J. Chen, N. J. Ross, '18]

- ZX-calculus: generalisation of quantum circuits
 - more expressive than quantum circuits (can represent all matrices in $\mathbb{C}^{m \times n}$)
 - equipped with a complete equational theory [E. Jeandel, S. Perdrix, R. Vilmart, '18]
 - extracting a quantum circuit from a unitary ZX-diagram is $\#P$-hard in general
 - completeness of ZX-calculus does not lead to completeness inside quantum circuits.

ZX-Diagrams

Unitary ZX-Diagrams

Quantum Circuits
Partial Results

- Complete equational theories for non-universal fragments, e.g.:
 - circuits on at most 2 qubits [X. Bian, P. Selinger, ’18]
 - CNot-dihedral circuits [M. Amy, J. Chen, N. J. Ross, ’18]

- ZX-calculus: generalisation of quantum circuits
 - more expressive than quantum circuits (can represent all matrices in $\mathbb{C}^{m \times n}$)
 - equipped with a complete equational theory [E. Jeandel, S. Perdrix, R. Vilmart, ’18]
 - extracting a quantum circuit from a unitary ZX-diagram is $\#P$-hard in general
 - completeness of ZX-calculus does not lead to completeness inside quantum circuits.
Partial Results

- Complete equational theories for non-universal fragments, e.g.:
 - circuits on at most 2 qubits [X. Bian, P. Selinger, ’18]
 - CNot-dihedral circuits [M. Amy, J. Chen, N. J. Ross, ’18]

- ZX-calculus: generalisation of quantum circuits
 - more expressive than quantum circuits (can represent all matrices in $\mathbb{C}^{m \times n}$)
 - equipped with a complete equational theory [E. Jeandel, S. Perdrix, R. Vilmart, ’18]
 - extracting a quantum circuit from a unitary ZX-diagram is $\#P$-hard in general
 - completeness of ZX-calculus does not lead to completeness inside quantum circuits.
LOPP-circuits are generated by:

- phase shifter
- beam splitter

Structure of PROP

by means of:

- sequential composition: $D_2 \circ D_1$
- parallel composition: $D_1 \oplus D_2$
LOPP-circuits are generated by:

\[
\begin{align*}
\phi & \quad \text{phase shifter} \\
\theta & \quad \text{beam splitter}
\end{align*}
\]

Structure of PROP

by means of:

\[
\begin{align*}
D_1 \circ D_2 & \quad \text{sequential composition} \\
D_1 \oplus D_2 & \quad \text{parallel composition}
\end{align*}
\]
LOPP-Calculus: A Graphical Language for Linear Optical Circuits

LOPP-circuits are generated by:

\[e^{i\varphi} \]

\[\begin{pmatrix} \cos \theta & i \sin \theta \\
 i \sin \theta & \cos \theta \end{pmatrix} \]

together with:

\[
\begin{pmatrix} 0 & 1 \\
 1 & 0 \end{pmatrix}
\]

\[
\begin{pmatrix} [D_1] & 0 \\
 0 & [D_2] \end{pmatrix}
\]

by means of:

sequential composition \(D_2 \circ D_1 \)

parallel composition \(D_1 \oplus D_2 \)

Structure of PROP
Universality of LOPP-Circuits

Proposition

For any unitary $U \in \mathbb{C}^{n \times n}$, there exists a LOPP-circuit D such that $[D] = U$.

Reck *et al.* (1994)

Clements *et al.* (2016)
Complete Equational Theory for LOPP-Circuits

Proposition (Soundness)
\[\forall D_1, D_2, \text{ if } \text{LOPP} \vdash D_1 = D_2 \text{ then } [D_1] = [D_2]. \]

Theorem (Completeness)
\[\forall D_1, D_2, \text{ if } [D_1] = [D_2] \text{ then } \text{LOPP} \vdash D_1 = D_2. \]
Complete Equational Theory for LOPP-Circuits

\[0 = 2\pi = 0 \]

\[0 = \pi - \pi = \frac{\pi}{2} - \frac{\pi}{2} \]

\[\gamma_1, \gamma_2, \gamma_4 = \delta_2, \delta_4, \delta_7 \]

\[\gamma_3 = \delta_3, \delta_5, \delta_8, \delta_9 \]

Proposition (Soundness)
\[\forall D_1, D_2, \text{ if } LOPP \vdash D_1 = D_2 \text{ then } [D_1] = [D_2]. \]

Theorem (Completeness)
\[\forall D_1, D_2, \text{ if } [D_1] = [D_2] \text{ then } LOPP \vdash D_1 = D_2. \]
Proof of Completeness

Proposition (Universality of LOPP)
For any unitary $U \in \mathbb{C}^{n \times n}$, there exists a LOPP-circuit D such that $[D] = U$.

Proposition (Universality of QC)
For any unitary $U \in \mathbb{C}^{2^n \times 2^n}$, there exists a quantum circuit C such that $[C] = U$.

n-Qubit Quantum Circuits

C_1

C_2

2n-Mode Optical Circuits
Proof of Completeness

Proposition (Universality of LOPP)
For any unitary $U \in \mathbb{C}^{n \times n}$, there exists a LOPP-circuit D such that $[D] = U$.

Proposition (Universality of QC)
For any unitary $U \in \mathbb{C}^{2^n \times 2^n}$, there exists a quantum circuit C such that $[C] = U$.
Proof of Completeness

Proposition (Universality of LOPP)
For any unitary $U \in \mathbb{C}^{n \times n}$, there exists a LOPP-circuit D such that $[D] = U$.

Proposition (Universality of QC)
For any unitary $U \in \mathbb{C}^{2^n \times 2^n}$, there exists a quantum circuit C such that $[C] = U$.
Proof of Completeness

Proposition (Universality of LOPP)
For any unitary \(U \in \mathbb{C}^{n \times n} \), there exists a LOPP-circuit \(D \) such that \([D] = U \).

Proposition (Universality of QC)
For any unitary \(U \in \mathbb{C}^{2^n \times 2^n} \), there exists a quantum circuit \(C \) such that \([C] = U \).
Proof of Completeness

Proposition (Universality of LOPP)
For any unitary $U \in \mathbb{C}^{n \times n}$, there exists a LOPP-circuit D such that $[D] = U$.

Proposition (Universality of QC)
For any unitary $U \in \mathbb{C}^{2^n \times 2^n}$, there exists a quantum circuit C such that $[C] = U$.

n-Qubit Quantum Circuits

2n-Mode Optical Circuits

Completeness of LOPP
Lemma 1

For any quantum circuit C, $\text{QC} \vdash D(E(C)) = C$.

Lemma 2

For every equation of the LOPP-calculus, of the form $D_1 = D_2$, one has $\text{QC} \vdash D(D_1) = D(D_2)$.
Proof of Completeness

Lemma 1
For any quantum circuit C, $\text{QC} \vdash D(E(C)) = C$.

Lemma 2
For every equation of the LOPP-calculus, of the form $D_1 = D_2$, one has $\text{QC} \vdash D(D_1) = D(D_2)$.

2n-Mode Optical Circuits

Completeness of LOPP
Key Aspects of the Proof

- Note that optical circuits and quantum circuits have different structures:

 Optical circuits: \[\vdots D_1 \vdots \]
 \[\vdots D_2 \vdots \]
 \[D_1 \oplus D_2 \]

 Quantum circuits: \[\vdots C_1 \vdots \]
 \[\vdots C_2 \vdots \]
 \[C_1 \otimes C_2 \]

- Decoding produces multi-controlled gates, e.g.:

 \[
 D \begin{pmatrix}
 \vdots & \vdots & \vdots & \vdots \\
 \end{pmatrix}
 =
 R_X(-2\theta)
 \]

- To define \(E \) and \(D \), we “sequentialise” the circuits:

 \[\vdots C_1 \vdots = \vdots C_1 \vdots \]
 \[\vdots C_2 \vdots = \vdots C_2 \vdots \]

- Some deformation rules need to be treated as proper equations.
Key Aspects of the Proof

- Note that optical circuits and quantum circuits have different structures:

 Optical circuits:
 \[
 \begin{array}{c}
 \vdots \\
 D_1 \\
 \vdots \\
 \vdots \\
 D_2 \\
 \vdots \\
 \vdots \\
 \vdots \\
 \end{array}
 \]

 \[D_1 \oplus D_2\]

 Quantum circuits:
 \[
 \begin{array}{c}
 \vdots \\
 C_1 \\
 \vdots \\
 \vdots \\
 C_2 \\
 \vdots \\
 \vdots \\
 \vdots \\
 \end{array}
 \]

 \[C_1 \otimes C_2\]

 \[\Rightarrow\]

 To define \(E\) and \(D\), we “sequentialise” the circuits:

 \[
 \begin{array}{c}
 \vdots \\
 C_1 \\
 \vdots \\
 \vdots \\
 C_2 \\
 \vdots \\
 \vdots \\
 \vdots \\
 \end{array} =
 \begin{array}{c}
 \vdots \\
 C_1 \\
 \vdots \\
 \vdots \\
 C_2 \\
 \vdots \\
 \vdots \\
 \vdots \\
 \end{array}
 \]

 \[\Rightarrow\]

 Some deformation rules need to be treated as proper equations.

 Decoding produces multi-controlled gates, e.g.:
 \[
 D(f_{\theta}) = R_X(-2\theta)
 \]
Key Aspects of the Proof

- Note that optical circuits and quantum circuits have different structures:

 Optical circuits:
 - D_1
 - D_2

 $D_1 \oplus D_2$

 Quantum circuits:
 - C_1
 - C_2

 $C_1 \otimes C_2$

 ⇒ To define E and D, we “sequentialise” the circuits:

 - C_1
 - C_2

 $C_1 \otimes C_2$

 $C_1 \oplus C_2$

 ⇒ Some deformation rules need to be treated as proper equations.

Decoding produces multi-controlled gates, e.g.:

$$
D \left(\begin{array}{c}
\theta
\end{array} \right) = R_X(-2\theta)
$$

A Complete Equational Theory for Quantum Circuits
Key Aspects of the Proof

- Note that optical circuits and quantum circuits have different structures:

 Optical circuits:
 \[
 D_1 \\
 D_2 \\
 D_1 \oplus D_2
 \]

 Quantum circuits:
 \[
 C_1 \\
 C_2 \\
 C_1 \otimes C_2
 \]

 \[D_1 \oplus D_2 \Rightarrow C_1 \otimes C_2\]

- To define \(E\) and \(D\), we “sequentialise” the circuits:

 \[
 \begin{align*}
 C_1 & = C_1 \\
 C_2 & = C_2
 \end{align*}
 \]

 \[\Rightarrow \text{Some deformation rules need to be treated as proper equations.}\]

- Decoding produces multi-controlled gates, e.g.:

 \[D \begin{pmatrix}
 \shortmid \theta \\
 \shortmid \\
 \shortmid \\
 \end{pmatrix} = R_X(-2\theta) \]
Key Aspects of the Proof

Note that optical circuits and quantum circuits have different structures:

Optical circuits:

\[D_1 \oplus D_2 \]

Quantum circuits:

\[C_1 \otimes C_2 \]

⇒ To define \(E \) and \(D \), we “sequentialise” the circuits:

\[C_1 \]

\[C_2 \]

\[\begin{array}{c}
\vdots \\
\end{array} \]

\[\begin{array}{c}
\vdots \\
\end{array} \]

\[= \]

\[\begin{array}{c}
\vdots \\
\end{array} \]

\[\begin{array}{c}
\vdots \\
\end{array} \]

⇒ Some deformation rules need to be treated as proper equations.

Decoding produces multi-controlled gates, e.g.:

\[D \left(\begin{array}{c}
\vdots \\
\end{array} \right) = R_X(-2\theta) \]

\[\left(\begin{array}{cccc}
1 & & & \\
& \cos \theta & i \sin \theta & \\
& i \sin \theta & \cos \theta & \\
& & & 1 \\
\end{array} \right) \]

two-level matrix
Future Work

- Simplify the equational theory, prove minimality
- Design procedures e.g. for circuit optimisation
- Prove upper and lower bounds on the size of the derivations, and of the intermediate circuits
Future Work

- Simplify the equational theory, prove minimality
- Design procedures e.g. for circuit optimisation
- Prove upper and lower bounds on the size of the derivations, and of the intermediate circuits
Future Work

- Simplify the equational theory, prove minimality

- Design procedures e.g. for circuit optimisation

- Prove upper and lower bounds on the size of the derivations, and of the intermediate circuits
Future Work

- Simplify the equational theory, prove minimality
- Design procedures e.g. for circuit optimisation
- Prove upper and lower bounds on the size of the derivations, and of the intermediate circuits