Cartesian Coherent Differential Categories

Thomas Ehrhard Aymeric Walch

IRIF

June 29, 2023
Plan

1. Differential λ-calculus and (Cartesian) Differential Categories
2. Coherent differentiation
3. Sum and differentiation in a partial setting
4. Compatibility with the Cartesian product
5. Conclusion and perspectives
A function $f : E \to F$ is differentiable in x if

$$f(x + u) \simeq f(x) + f'(x) \cdot u$$

With $f'(x) : E \to F$ a linear map.

Taylor Expansion

$$(\lambda x. P) Q \mapsto \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n P}{\partial x^n} \right) (Q, \ldots, Q)_{\text{\scriptsize n times}}$$
Differential λ-calculus

A function $f : E \to F$ is differentiable in x if

$$f(x + u) \simeq f(x) + f'(x) \cdot u$$

With $f'(x) : E \to F$ a linear map.

Differential in terms

If $\Gamma, x : A \vdash P : B$ and $\Gamma \vdash Q : A$

$$\Gamma, x : A \vdash \frac{\partial P}{\partial x} \cdot Q : B$$

substitute one occurrence of x by Q in P.
Differential \(\lambda \)-calculus

A function \(f : E \to F \) is differentiable in \(x \) if

\[
 f(x + u) \simeq f(x) + f'(x) \cdot u
\]

With \(f'(x) : E \to F \) a linear map.

Differential in terms

If \(\Gamma, x : A \vdash P : B \) and \(\Gamma \vdash Q : A \)

\[
 \Gamma, x : A \vdash \frac{\partial P}{\partial x} \cdot Q : B
\]

substitute one occurrence of \(x \) by \(Q \) in \(P \).

Taylor Expansion

\[
 (\lambda x. P)Q \mapsto \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n P}{\partial x^n} \cdot (Q, \ldots, Q) \right) \left[0/x \right]
\]
Recall: $L!(X, Y) := L(!X, Y)$ is a CCC.

1. Differential Category \(L \) (Linear Logic)
2. Cartesian Differential Category \(C \) (first order \(\lambda \)-calculus)

Kleisli ▶ Compatibility with the CCC structure: models of differential \(\lambda \)-calculus

Bucciarelli, Ehrhard, and Manzonetto 2010

▶ Models for Taylor expansion (qualitative setting) Manzonetto 2012

Example: relation model

Blute, Cockett, and Seely 2006.

Blute, Cockett, and Seely 2009.
Recall: $\mathcal{L}_!(X, Y) := \mathcal{L}(!X, Y)$ is a CCC

\begin{tikzcd}
\text{Differential Category}^1 \mathcal{L} \arrow[swap]{r}{\text{Kleisli}} & \text{Cartesian Differential Category}^2 \mathcal{C}
\end{tikzcd}

(Linear Logic) (first order λ-calculus)

1Blute, Cockett, and Seely 2006.

Recall: $\mathcal{L}(X, Y) := \mathcal{L}(!X, Y)$ is a CCC

Differential Category\(^1\) \mathcal{L} (Linear Logic) \quad \xrightarrow{\text{Kleisli}} \quad$ Cartesian Differential Category\(^2\) \mathcal{C} (first order λ-calculus)

\(^1\)Blute, Cockett, and Seely 2006.
\(^2\)Blute, Cockett, and Seely 2009.
Recall: $\mathcal{L}(!X, Y) := \mathcal{L}(!X, Y)$ is a CCC

Cartesian Differential Category\(^2\) \mathcal{C}
(first order λ-calculus)

\(^1\)Blute, Cockett, and Seely 2006.
\(^2\)Blute, Cockett, and Seely 2009.
Recall: $\mathcal{L}_!(X, Y) := \mathcal{L}(!X, Y)$ is a CCC

Cartesian Differential Category\(^2\) \mathcal{C}
(first order λ-calculus)

- Compatibility with the CCC structure: models of differential λ-calculus
 Bucciarelli, Ehrhard, and Manzonetto 2010
- Models for Taylor expansion (qualitative setting) Manzonetto 2012

Example: relation model

\(^1\)Blute, Cockett, and Seely 2006.
\(^2\)Blute, Cockett, and Seely 2009.
(Left) additivity and non determinism

Leibniz: $f'(x, y) \cdot (u, v) = \partial_0 f(x, y) \cdot u + \partial_1 f(x, y) \cdot v$
(Left) additivity and non determinism

Leibniz: \(f'(x, y) \cdot (u, v) = \partial_0 f(x, y) \cdot u + \partial_1 f(x, y) \cdot v \)

A Differential Category \(\mathcal{L} \) must be additive

- \(\mathcal{L}(X, Y) \) is a commutative monoïd
- \((f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g \) (left additive)
- \(h \circ (f_1 + f_2) = h \circ f_1 + h \circ f_2 \) (additive)
(Left) additivity and non determinism

Leibniz: \(f'(x, y) \cdot (u, v) = \partial_0 f(x, y) \cdot u + \partial_1 f(x, y) \cdot v \)

A Cartesian Differential Category \(\mathcal{C} \) must be left additive

- \(\mathcal{C}(X, Y) \) is a commutative monoïd
- \((f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g \) (left additive)
- \(h \circ (f_1 + f_2) = h \circ f_1 + h \circ f_2 \) (additive)
(Left) additivity and non determinism

Leibniz: \(f'(x, y) \cdot (u, v) = \partial_0 f(x, y) \cdot u + \partial_1 f(x, y) \cdot v \)

A Differential Category \(\mathcal{L} \) must be additive

- \(\mathcal{L}(X, Y) \) is a commutative monoïd
- \((f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g \) (left additive)
- \(h \circ (f_1 + f_2) = h \circ f_1 + h \circ f_2 \) (additive)

Non-deterministic: \(\text{true}, \text{false} \in \mathcal{L}(1, 1 \oplus 1) \). What is \(\text{true} + \text{false} \) ?
(Left) additivity and non determinism

\[
\text{Leibniz: } f'(x, y) \cdot (u, v) = \partial_0 f(x, y) \cdot u + \partial_1 f(x, y) \cdot v
\]

A Differential Category \(\mathcal{L} \) must be additive

- \(\mathcal{L}(X, Y) \) is a commutative monoid
- \((f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g \) (left additive)
- \(h \circ (f_1 + f_2) = h \circ f_1 + h \circ f_2 \) (additive)

Non-deterministic: \(\text{true}, \text{false} \in \mathcal{L}(1, 1 \oplus 1) \). What is \(\text{true} + \text{false} \)?
(Left) additivity and non determinism

Leibniz: \(f'(x, y) \cdot (u, v) = \partial_0 f(x, y) \cdot u + \partial_1 f(x, y) \cdot v \)

A Differential Category \(\mathcal{L} \) must be additive

- \(\mathcal{L}(X, Y) \) is a commutative monoïd
- \((f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g \) (left additive)
- \(h \circ (f_1 + f_2) = h \circ f_1 + h \circ f_2 \) (additive)

Non-deterministic: true, false \(\in \mathcal{L}(1, 1 \oplus 1) \). What is true + false ?

- If \((\lambda x. P)Q\) is well typed and reduces to a variable: only one member of \(\sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n P}{\partial x^n} \cdot (Q, \ldots, Q) \right) \) \([0/x] \) is non zero.
(Left) additivity and non determinism

Leibniz: \(f'(x, y) \cdot (u, v) = \partial_0 f(x, y) \cdot u + \partial_1 f(x, y) \cdot v \)

A Differential Category \(\mathcal{L} \) must be additive

- \(\mathcal{L}(X, Y) \) is a commutative monoïd
- \((f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g \) (left additive)
- \(h \circ (f_1 + f_2) = h \circ f_1 + h \circ f_2 \) (additive)

Non-deterministic: true, false \(\in \mathcal{L}(1, 1 \oplus 1) \). What is true + false?

- If \((\lambda x . P)Q \) is well typed and reduces to a variable: only one member of \(\sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial^n P}{\partial x^n} \cdot (Q, \ldots, Q) \right) [0/x] \) is non zero.

- Interesting models \(\mathcal{L} \) of LL in which \(\mathcal{L}_1 \) is a category with differentiable morphisms, with a partial addition
Plan

1. Differential λ-calculus and (Cartesian) Differential Categories

2. Coherent differentiation

3. Sum and differentiation in a partial setting

4. Compatibility with the Cartesian product

5. Conclusion and perspectives
Our work in this paper

Differential Category\(^3\) (Linear Logic)

\[\xrightarrow{\text{Kleisli}}\]

Cartesian Differential Category\(^5\) (first order λ-calculus)

\[\xrightarrow{\text{Generalizes}}\]

Coherent Differential Category\(^4\) (Linear Logic)

\(^3\)Blute, Cockett, and Seely 2006.
\(^4\)Ehrhard 2023.
\(^5\)Blute, Cockett, and Seely 2009.
Our work in this paper

Differential Category\(^3\) (Linear Logic)

Generalizes

Coherent Differential Category\(^4\) (Linear Logic)

Kleisli

Cartesian Differential Category\(^5\) (first order \(\lambda\)-calculus)

Generalizes

Cartesian Coherent Differential Category (first order \(\lambda\)-calculus)

\(^3\)Blute, Cockett, and Seely 2006.
\(^4\)Ehrhard 2023.
\(^5\)Blute, Cockett, and Seely 2009.
Our work in this paper

Differential Category\(^3\) (Linear Logic) \quad \text{Generalizes} \quad \text{Coherent Differential Category}\(^4\) (Linear Logic)

Kleisli

Cartesian Differential Category\(^5\) (first order λ-calculus) \quad \text{Generalizes} \quad \text{Cartesian Coherent Differential Category (first order λ-calculus)}

Models of a first order calculus with differentiation (subject reduction)

\(^3\)Blute, Cockett, and Seely 2006.
\(^4\)Ehrhard 2023.
\(^5\)Blute, Cockett, and Seely 2009.
Comparison with tangeant category

- Tangeant Category: distinguish point/vector, total sum on vectors
- Coherent Differential Category: no distinction point/vector, but restricted sum
Plan

1. Differential λ-calculus and (Cartesian) Differential Categories

2. Coherent differentiation

3. Sum and differentiation in a partial setting

4. Compatibility with the Cartesian product

5. Conclusion and perspectives
A categorical axiomatization of partial sum

A structure for partial sum

\(\tilde{D} : \text{Obj}(C) \to \text{Obj}(C) : \tilde{D}X = \{ \llangle x_0, x_1 \rrangle | x_0 + x_1 \text{ is defined} \} \)

- \(\pi_0, \pi_1 \in C(\tilde{D}X, X) \) jointly monic
A categorical axiomatization of partial sum

A structure for partial sum

\[\tilde{D} : \text{Obj}(\mathcal{C}) \to \text{Obj}(\mathcal{C}) : \tilde{D}X = \{ \langle x_0, x_1 \rangle \mid x_0 + x_1 \text{ is defined} \} \]

- \(\pi_0, \pi_1 \in \mathcal{C}(\tilde{D}X, X) \) jointly monic
- Sum \(\sigma \in \mathcal{C}(\tilde{D}X, X) \) \(\sigma : \langle x_0, x_1 \rangle \mapsto x_0 + x_1 \)
A categorical axiomatization of partial sum

A structure for partial sum

\(\tilde{D} : \text{Obj}(C) \rightarrow \text{Obj}(C) : \tilde{D}X = \{ \langle x_0, x_1 \rangle | x_0 + x_1 \text{ is defined} \} \)

▶ \(\pi_0, \pi_1 \in C(\tilde{D}X, X) \) jointly monic

▶ Sum \(\sigma \in C(\tilde{D}X, X) \) \(\sigma : \langle x_0, x_1 \rangle \mapsto x_0 + x_1 \)

\(f_0, f_1 \in C(X, Y) \) \underline{summable}: \(\exists \langle f_0, f_1 \rangle \in C(X, \tilde{D}Y) \) s.t. \(\pi_i \circ \langle f_0, f_1 \rangle = f_i \).

\(x \mapsto \langle f_0(x), f_1(x) \rangle \)
A categorical axiomatization of partial sum

A structure for partial sum

\(\tilde{D} : \text{Obj}(C) \to \text{Obj}(C) : \tilde{D}X = \{x \mid x_0 + x_1 \text{ is defined} \} \)

- \(\pi_0, \pi_1 \in C(\tilde{D}X, X) \) jointly monic
- Sum \(\sigma \in C(\tilde{D}X, X) \) \(\sigma : x_0 + x_1 \mapsto x_0 + x_1 \)

\(f_0, f_1 \in C(X, Y) \) summable: \(\exists \langle f_0, f_1 \rangle \in C(X, \tilde{D}Y) \) s.t. \(\pi_i \circ \langle f_0, f_1 \rangle = f_i. \)

\(x \mapsto \langle f_0(x), f_1(x) \rangle \)

\[
\begin{array}{ccc}
X & \xrightarrow{\langle f_0, f_1 \rangle} & \tilde{D}Y \\
\downarrow & & \downarrow \sigma \\
f_0 + f_1 & & Y
\end{array}
\]
A categorical axiomatization of partial sum

A structure for partial sum

\[\tilde{D} : \text{Obj}(C) \to \text{Obj}(C) : \tilde{D}X = \{ \langle x_0, x_1 \rangle | x_0 + x_1 \text{ is defined} \} \]

- \(\pi_0, \pi_1 \in \mathcal{C}(\tilde{D}X, X) \) jointly monic
- Sum \(\sigma \in \mathcal{C}(\tilde{D}X, X) \) \(\sigma : \langle x_0, x_1 \rangle \mapsto x_0 + x_1 \)

\(f_0, f_1 \in \mathcal{C}(X, Y) \) **summable**: \(\exists \langle f_0, f_1 \rangle \in \mathcal{C}(X, \tilde{D}Y) \) s.t. \(\pi_i \circ \langle f_0, f_1 \rangle = f_i \).

\[
\begin{array}{ccc}
X & \xrightarrow{\langle f_0, f_1 \rangle} & \tilde{D}Y \\
& & \sigma \\
f_0 + f_1 & \downarrow & Y
\end{array}
\]

\[\tilde{D}X = X \& X (= X \times X) \iff \text{Cartesian Left Additive Category} \]
Summability structure

Compatibility with composition

If g_0 and g_1 are summable, then $g_0 \circ f$ and $g_1 \circ f$ are summable.

- $0 \circ f = 0$ and $(g_0 + g_1) \circ f = g_0 \circ f + g_1 \circ f$ (left additive)
- $h \circ 0 = 0$ and $h \circ (f_0 + f_1) = h \circ f_0 + h \circ f_1$
Summability structure

Compatibility with composition

If g_0 and g_1 are summable, then $g_0 \circ f$ and $g_1 \circ f$ are summable.

> $0 \circ f = 0$ and $(g_0 + g_1) \circ f = g_0 \circ f + g_1 \circ f$ (left additive)

> $h \circ 0 = 0$ and $h \circ (f_0 + f_1) = h \circ f_0 + h \circ f_1$

Left summability structure

Axioms that endows $C(X, Y)$ with the structure of a partially additive monoid, see Arbib and Manes 1980
Summability structure

Compatibility with composition

If \(g_0 \) and \(g_1 \) are summable, then \(g_0 \circ f \) and \(g_1 \circ f \) are summable.

\[0 \circ f = 0 \text{ and } (g_0 + g_1) \circ f = g_0 \circ f + g_1 \circ f \text{ (left additive)} \]

\[h \circ 0 = 0 \text{ and } h \circ (f_0 + f_1) = h \circ f_0 + h \circ f_1 \]

Left summability structure

Axioms that endows \(C(X, Y) \) with the structure of a partially additive monoid, see Arbib and Manes 1980

\(\tilde{D} \) is not a functor (yet)!
Differentiation

An operator for differentiation

Given $f \in \mathcal{C}(X, Y)$, there is $\tilde{D}f \in \mathcal{C}(\tilde{D}X, \tilde{D}Y)$ such that $\pi_0 \circ \tilde{D}f = f \circ \pi_0$

$$
\tilde{D}f : \tilde{D}X \rightarrow \tilde{D}Y
\langle x, u \rangle \mapsto \langle f(x), f'(x)u \rangle
$$
Differentiation

An operator for differentiation

Given $f \in C(X, Y)$, there is $\tilde{D}f \in C(\tilde{D}X, \tilde{D}Y)$ such that $\pi_0 \circ \tilde{D}f = f \circ \pi_0$

$$\tilde{D}f : \tilde{D}X \rightarrow \tilde{D}Y$$

$$\langle x, u \rangle \mapsto \langle f(x), f'(x).u \rangle$$

Define $f' = \pi_1 \circ \tilde{D}f \in C(\tilde{D}X, Y)$
Differentiation

An operator for differentiation

Given \(f \in C(X, Y) \), there is \(\tilde{D}f \in C(\tilde{D}X, \tilde{D}Y) \) such that \(\pi_0 \circ \tilde{D}f = f \circ \pi_0 \)

\[
\tilde{D}f : \quad \tilde{D}X \rightarrow \tilde{D}Y \\
\langle x, u \rangle \mapsto \langle f(x), f'(x).u \rangle
\]

Define \(f' = \pi_1 \circ \tilde{D}f \in C(\tilde{D}X, Y) \)

Axioms of differentiation: very structural properties

► \(\tilde{D} \) is a functor (Chain rule)
Differentiation

An operator for differentiation

Given \(f \in C(X, Y) \), there is \(\tilde{D}f \in C(\tilde{D}X, \tilde{D}Y) \) such that \(\pi_0 \circ \tilde{D}f = f \circ \pi_0 \)

\[
\tilde{D}f : \quad \tilde{D}X \rightarrow \tilde{D}Y \\
\langle x, u \rangle \mapsto \langle f(x), f'(x) \cdot u \rangle
\]

Define \(f' = \pi_1 \circ \tilde{D}f \in C(\tilde{D}X, Y) \)

Axioms of differentiation: very structural properties

- \(\tilde{D} \) is a functor (Chain rule)
- \(\pi_0, \pi_1 \) are linear (\(h \) linear if \(h'(x) \cdot u = h(u) \))
- \(\sigma \) is linear (\((f + g)' = f' + g' \))
Differentiation

An operator for differentiation

Given \(f \in \mathcal{C}(X, Y) \), there is \(\tilde{D}f \in \mathcal{C}(\tilde{D}X, \tilde{D}Y) \) such that \(\pi_0 \circ \tilde{D}f = f \circ \pi_0 \)

\[
\tilde{D}f : \tilde{D}X \rightarrow \tilde{D}Y \\
\langle x, u \rangle \mapsto \langle f(x), f'(x).u \rangle
\]

Define \(f' = \pi_1 \circ \tilde{D}f \in \mathcal{C}(\tilde{D}X, Y) \)

Axioms of differentiation: very structural properties

- \(\tilde{D} \) is a functor (Chain rule)
- \(\pi_0, \pi_1 \) are linear (\(h \) linear if \(h'(x) \cdot u = h(u) \))
- \(\sigma \) is linear (\((f + g)' = f' + g' \))
- Leibniz + Schwarz + the differential is linear = naturality!
Define ν_0, θ, c and l

\[\nu_0 \circ x = \langle x, 0 \rangle \]

\[\theta \circ \langle \langle x, u \rangle, \langle v, w \rangle \rangle = \langle x, u + v \rangle \]

\[c \circ \langle \langle x, u \rangle, \langle v, w \rangle \rangle = \langle \langle x, v \rangle, \langle u, w \rangle \rangle \]

\[l \circ \langle x, u \rangle = \langle \langle x, 0 \rangle, \langle 0, u \rangle \rangle \]

- \tilde{D} is a monad with unit ν_0 and sum θ (The differential is additive $=$ Leibniz)
- c is natural (Schwarz)
- l is natural (The differential is linear)
Define \(\nu_0, \theta, c \) and \(l \)

\[
\nu_0 \circ x = \langle x, 0 \rangle \\
\theta \circ \langle \langle x, u \rangle, \langle v, w \rangle \rangle = \langle x, u + v \rangle \\
c \circ \langle \langle x, u \rangle, \langle v, w \rangle \rangle = \langle \langle x, v \rangle, \langle u, w \rangle \rangle \\
l \circ \langle x, u \rangle = \langle \langle x, 0 \rangle, \langle 0, u \rangle \rangle
\]

\(\tilde{D} \) is a monad with unit \(\nu_0 \) and sum \(\theta \) (The differential is additive = Leibniz)

\(c \) is natural (Schwarz)

\(l \) is natural (The differential is linear)

Cartesian Differential Categories

Naturality equations \(\iff \) equations on the differential \(f' \).

They are exactly the equations of Cartesian Differential Categories.

\[
\text{Cartesian Differential Category } \iff \tilde{D}X = X \& X
\]
Plan

1. Differential λ-calculus and (Cartesian) Differential Categories
2. Coherent differentiation
3. Sum and differentiation in a partial setting
4. Compatibility with the Cartesian product
5. Conclusion and perspectives
Compatibility with Cartesian Product

Compatibility with the Cartesian product

- Product and sum: $\langle x, y \rangle + \langle u, v \rangle = \langle x + y, u + v \rangle$

- Product and differential: the projections of the cartesian product are linear, $D\langle f, g \rangle = \langle Df, Dg \rangle$
Compatibility with Cartesian Product

Compatibility with the Cartesian product

- Product and sum: \(\langle x, y \rangle + \langle u, v \rangle = \langle x + y, u + v \rangle \)
- Product and differential: the projections of the cartesian product are linear, \(\text{D}\langle f, g \rangle = \langle \text{D}f, \text{D}g \rangle \)

In analysis (and Cartesian Differential Categories)

\[
\partial_0 f(x, y) \cdot u = f'(x, y) \cdot (u, 0)
\]
Compatibility with Cartesian Product

Compatibility with the Cartesian product

- Product and sum: \(\langle x, y \rangle + \langle u, v \rangle = \langle x + y, u + v \rangle \)
- Product and differential: the projections of the cartesian product are linear, \(D\langle f, g \rangle = \langle Df, Dg \rangle \)

In analysis (and Cartesian Differential Categories)

\[
\partial_0 f(x, y) \cdot u = f'(x, y) \cdot (u, 0)
\]

In our setting: strength \(\Phi^0 \in C(\tilde{D} X_0 \& X_1, \tilde{D}(X_0 \& X_1)) \)

\[
\Phi^0 : \tilde{D} X_0 \& X_1 \rightarrow \tilde{D} X_0 \& \tilde{D} X_1 \cong \tilde{D}(X_0 \& X_1)
\]

\[
\langle\langle x, u \rangle, y \rangle \mapsto \langle\langle x, u \rangle, \langle y, 0 \rangle \rangle \mapsto \langle\langle x, y \rangle, \langle u, 0 \rangle \rangle
\]
Compatibility with the Cartesian product

- Product and sum: \(\langle x, y \rangle + \langle u, v \rangle = \langle x + y, u + v \rangle \)
- Product and differential: the projections of the cartesian product are linear, \(D\langle f, g \rangle = \langle Df, Dg \rangle \)

In analysis (and Cartesian Differential Categories)

\[
\partial_0 f(x, y) \cdot u = f'(x, y) \cdot (u, 0)
\]

In our setting: strength \(\Phi^0 \in C(\tilde{D}X_0 & X_1, \tilde{D}(X_0 & X_1)) \)

\[
\Phi^0 : \quad \tilde{D}X_0 & X_1 \to \tilde{D}X_0 & \tilde{D}X_1 \simeq \tilde{D}(X_0 & X_1) \\
\langle\langle x, u \rangle, y \rangle \mapsto \langle\langle x, u \rangle, \langle y, 0 \rangle \rangle \mapsto \langle\langle x, y \rangle, \langle u, 0 \rangle \rangle
\]

Partial derivative of \(f \in C(X_0 & X_1, Y) \): \(\tilde{D}_0 f \in C(\tilde{D}X_0 & X_1, \tilde{D}Y) \)

\[
\tilde{D}X_0 & X_1 \xrightarrow{\Phi^0} \tilde{D}(X_0 & X_1) \xrightarrow{\tilde{D}f} \tilde{D}Y
\]
Leibniz and Schwarz

Leibniz

In analysis:

\[
f'(x, y) \cdot (u, v) = \partial_0 f(x, y) \cdot u + \partial_1 f(x, y) \cdot v
\]

In Cartesian Coherent Differential Categories

\[
\tilde{D} f \circ c^{-1} = \theta \circ \tilde{D}_0 \tilde{D}_1 f = \theta \circ \tilde{D}_1 \tilde{D}_0 f
\]
Plan

1. Differential λ-calculus and (Cartesian) Differential Categories
2. Coherent differentiation
3. Sum and differentiation in a partial setting
4. Compatibility with the Cartesian product
5. Conclusion and perspectives
Takeaway

- Axiomatization of differentiation with partial sums
- Axioms of differentiation: functoriality and naturality
- Nice theory of partial derivatives
TODO list

- Introduce closure to interpret a deterministic differential λ-calculus
- Deal with fixpoints to interpret the Coherent Differential PCF of Ehrhard
- Revisit syntactical Taylor expansion in a coherent setting
- It should provide generic denotational proofs of important results on syntactical Taylor expansion
- Is this construction insightful for traditional analysis?